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Lie—Backlund Vector Fields for the Nonlinear System,
Qt = AQxx + F(Qx’ Q)
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We have analyzed the class of nonlinear second-order equations written as
Q, = AQ,,+ F(Qx, Q) with Q= () and A, F are, respectively, matrix and vector
functions depending on Q, Q,, from the point of view of Lie-Backlund vector
fields. When the vector function F does not depend on Q,, these equation set
reduces to the coupled diffusion equations discussed by Steeb. But our general-
ized system encompasses a large class of physically meaning full nonlinear
equations, such as (i) dispersive water waves and (ii) a completely anisotropic
Heisenberg spin chain. We also exhibit a new nonlinear coupled system which
do have nontrivial Lie-Backlund vector fields. Also our approach yields more
information about the symmetry generators for a wider class of nonlinear
equations than the function space approach of Fuchsteiner in a much simpler way.

1. INTRODUCTION

Classification of integrable equations from the point of view of sym-
metry structure forms one of the main techniques of analysis for the
nonlinear equations (Fokas and Fuchsteiner, 1981). It has already been
observed that nonlinear equations of second-order either forms the several
type nonlinear Schrodinger equations or the celebrated diffusion equations
(Steeb and Oevel, 1983). Here we have observed that it is possible to
generalize these second-order nonlinear equations further, so that these
include some more physically interesting cases, such as, anisotropic
Heisenberg spin chain, dispersive water waves, etc. We have simultaneously
determined the structure of the equations and also that of the Lie-Backlund
vector fields. In this approach it becomes easier to fix up the form of the
symmetry generators for complicated equations such as AHSC, which has
been also tackled by Fuchsteiner (1979) by a function theoretic method.
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2. FORMULATION

Let us denote by Q a two-component vector field, and let us consider
a set of coupled equations:

Q=AQxu+F(Q, Q) (1)

When the Q, dependence of F is neglected we get the generalized class of
diffusions equations, which has been treated by Steeb et al. In general A
can also depend on (u, v) but here we consider only constant matrices

A=<Dl’ D;)
D23 Dé
so that the set (1) reads:

U,= DyD,+ Div,+ f(u, v, uy, v;) )
Vi=D,V,+ DU, + g(u, v, uy, v,)

In our ensuing computations we will have to consider also various differen-
tial consequences of (2). Let us assume that the Lie-Backlund vector field
is written as

V=mn(u, v) +n2(u v) (3)

Consideration of invariance for the equations (2) leads to the following:
LyF=0, LyG=0 (4)
where
F=U,~Dyu,~Djv,~ f } )
G=V,—D,v,— Diu,—g

Ly, denoting the Lie derivative (Ousjannikov, 1982) of F and G with respect
to Lie-Backlund vector fields. But for the actual computation of (4) we
require the extended form of the Vector fields, which reads

a
Va=m—+t7 -—~+ D, + D, —
™ ou ( "71) ( 7]2) 90,

+(Dx771)_+(Dx772)_ (6)
(%)
where D, stands for the total derivative (Anderson and Ibragimov, 1979)

d a
D, -_+Z Uiy +Z Viv1 7 (7)
a0x ou; ov;



Lie~-Backlund Vector Fields 321

So that the equations determining the structure of n; and 7, are
—Nfu— NS~ (Dx"h).f;l ~ (Dx"'lz)ful - DlDinl

—D{Diny,+ Dy =0 (8)
— 118 — 1280 — (Dx11) &4, — (Dx712) 80, — D2 D%y
“Dz(Diﬂi)+Dt7?2=0 (9)

3. SOLUTION FOR (f,2) AND (7, 72)

Since our equations are assumed fo be linear in u, and v,, we assume
a linear structure for n, and %, in u;, v; and write

M = Aty + byvs+ h(u, uy, uy, v, vy, V5)

(10)
M2 = U+ byvs+ k(u, uy, uy, v, vy, v2)
Conditions arising from the coefficients of u,, v, are
ah -3k
Joy=—guy, =
R T
(11)
fumge, | h_K
1= 8y, du, 9D,

where we consider the situation
D,=D,, a,=b,, D,=-Dj, a,=—b,

Equations (11) contains information for both the structure of the equation
and the structure of the symmetry generator. For example we have

M =a(u, v, u;0,)uy+ Bun,, Vo) v+ ayus — ayv, + b’

(12)
2= a(u, v, U0;) v, — Buuy, vv) Uy + @tz + a v+ k'
Collecting coefficients of u,, v;, etc. yields
a=¢(u, v)v,— ¥y, v)u
1 1 (13)

3 = ¢'(ua v)u1+ dj(u: U)vl

Substituting this information in the rest of the equations of (8) and (9) we
get important conditions for the structure of equations

fulu,ul:() fu‘v1u1=0

Lo, =0 uno, =0

1 1 1 (14)
fu1u1v1 = 0 f;)lalul = O
guluivl :0 gvlv;v, =G
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So that we may put

f=o(u, U)”%"“f(u, U)Uf"' 0(u, v)u,v,

(15)
g=0'(u, v)ui+&u v)vi+0'(u, v)u,0,
Imparing (11) on (15) leads to
f=oui—-vH)-20'uv,
g=0o'(ul-v)+20u, (16)
Simultaneously we get equations of the following type for A’ and K"
VAN 27,1
Dyt D1 = ot B 3 ot St o]
=305 G, + Uy Buuyuy T U1 8oty 0, (17)
Suggesting that
h' = A(u, v)ui+ B(u, v)uiv, + C(u, v)u, v+ D(u, v)v} a8)

K'=A'(u, v)ui+ B'(u, v)ulv,+ C'(u, v)u,03+ D'(u, v) v}

Next we put the complete structure of 5, n° in the determining equations
(8) and (9) and equating coefficients of u3, v}, u,v;; we obtain

2D}[3A-2B']=2a,]o0,—0.]
2DJ[C—-3D"=-2a,[-0,+ 0] (19)
2Di[2B-2C"1=-2a,[ 20, —20,]

If we now set for simplicity’s sake

D=D'=0
m= -2 (0.~ o)l + 22 (o, + ol ud0,
D; D;

22 (o= oo} 9 0)v = $(u, D)l
1

+[p(u, v)uy+ ¢ (u, v)v, ]+ ajus—a, Vs (20)
a 2a
M= _B%;(Uv+0;)u?—'5;2(gu—a:;)uivl

(0 oLt [ V)t (s v)orJu,
1

+{d(u, v)v, — ¥ (u, v)uJv,+ aus +a, Vv, (21)
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When
f=o(u,v)(ui— Vi) —20"(u, v)u;v, 22)
g =o'(u, )(ui+v))+20(u, v)u;,

So we observe that given any particular choice of o, and o', we can
immediately write down the symmetry generators 7, and 7,.

Example 1. Let us consider the system of equations

2(u? - vHv ~duu, v,

U, = U+

1+ u?+0?
» s (23)
v, = u +2(u1-"vl)u+40u101
T 1+ u?+v?
for this system:
2v 2u
D 20’ D;:l’ = TR e———
! ! T it it o ERE T

so that it is easy to write down the form of 5, and 7,. It is rather important
to note this complicated-looking coupled system is not an artificial one, but
a transformed form of a very important physical system, and that is the
famous anisotropic Heisenberg spin chain, written as

8, =8xS,+SxJS (24)

where S=0,S,, J=diag(J,, J,, J;) along with S7+ S5+ 83=1. It is easily
seen that by the mapping

2Y 1-1YP?
S, +iS, =—— L Seutl SR
SHS=T0vE STIYr (25)
it is converted to the form,
2YY?2 Y? (|YP-1 )
Y, = Yy~ (L= T = | i
o= Yyt ‘)[4;Y12(;YP+1 ‘
Y2 (lYP-1 \ 1]YP-1
+ 3 s Hi] s
4YP\| Y +1 2|YP+1
|[YP-1

If we now write Y = U+iV then (26) is nothing but a coupled set like (8)
and (9). So one can immediately write down the form of the generators
from our formulas (21). Equation (23) is a special case of (26) when
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J,=J,=1J;, so that it is a isotropic Heisenberg spin chain equation. In a
recent publication. Fuchsteiner has elaborated a Lie-product-based method
for the AHSC equation, but we feel that our approach, being less sophisti-
cated and more straightforward, is easy to use yet yields the same infor-
mation.

Example 2. As a second example we consider the system

1ui+2u

Uy = Uy—
! 2 utvo

) 27)
o = —1 1 v1+2u,0,
! 272 w4t
for this case a,= b, =0 and a, = b,. Similar considerations as before yield

h oh h k
oh_sh_ ok _ok 08
8'[]2 auz 8u2 BUZ

So that
7, = a Uz + a(uvu, v uy + h(uovu, v,) (29)
7= a,05+ o (uvu,v,) v, + k(uvu,v,)
Proceeding to the second step of the calculation
(Di=D)=0,D;=-D,=1)
2 au+ ] —3a,[u fr, + V1f, 1=0
Aou+ av]—3a;[ U 8w + 1180, ] =0 (30)

ah
—-2—= _3a1[u1-ﬁ4”1 + vl'ﬂwl]
Bvl

ok
2—= "3a1[ulguu1 + Ulgvul]
du,

which yields
Joro, = 0= 8uyu,
So that ' |
f=vptq g=uyr+s
Finally we deduce f, .., =0 and g, ,,,, =0, which immediately leads to
f=p(uuv)v,+ §(u, v)ui

(31)
g= ;(u’ vy, v)u1+§(u, U)U%
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with a proper choice of these functions we can generate now equation (27)
and the corresponding symmetry generators are determined from (30).

Example 3. Lastly we consider a very important situation; given by the
case of the dispersive water waves, written as (Kupershuidt, 1985)

Uy
U, = __5+ U+ vy

(32)

UZ
v =7——(ulv+uvl)
In this situation we have
m1 = @yt + a(u, v)uy+ h(u o, u,0,)
Ny =a,v3+ a(u, v)v, + K(u,0,4u,0,)
S, = B =0, fuo, = S0, =0

These conditions of f and g are easily satisfied by those in (32). Also we
obtain

oh
:9”" = "'3‘11[“1fuu1 + Uxf;mI]
Uy
(33)

LA 3a.{u + 0y G, ]
aul 1 lguui lguul
A calculation similar to our previous cases yields

f=¢(u, v)u+ ¢y, v)v,

g=¢'(u, v)u,— ¢(u, v)v,
along with

¢u='—¢’:4; ¢’v=“‘1’i}

So we can determine again (f, g) and also (h, k).

4. DISCUSSIONS

In the above we made a classification, on the basis of Lie-Backlund
vector fields, for nonlinear equations of second order than the diffusion
equations. The system of equations discussed are quite general to include
various physical examples, in each case we have set up the requisite formulas
for the symmetry generators.
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